Turn Global Financial Filings into Traceable Insights

Agentic AI systems grounded on public companies' disclosures that power leading long/short hedge funds and investment banks
Filters
Annual Reports
Interim Reports
Press Releases
Earnings Calls
Proxy Statements
Summarize Snapchat's convertible debt balance
What was the termination fees and the reverse termination fees in Qualtrics merger?
Provide the geographical revenue of Microsoft for the last four quarters
Who was the advisor the Momentive's acquisition by STG?
How much did J&J spend on R&D in 2024 and which business units were the primary beneficiaries?
Summarize the background of the Duck Creek merger and the key bidders
Used by analysts at...
Captide SaaS Platform

Query global filings in natural language for traceable insights and exportable data

PLTR, SNOW, GTLB, MDB, ZS, CFLT net dollar retention last 6 quarters
Net dollar retention of software equities
6-K
DEF 14A
Report
20-F
8-K
Transcript
10-Q
10-K
Net dollar retention comparision
Palantir
Snowflake
Gitlab
MongoDB
Zscaler
Confluent
Q4 2023
108%
135%
130%
120%
117%
125%
Q1 2024
111%
131%
129%
120%
116%
≈123%
Q2 2024
114%
128%
126%
119%
115%
118%
Q3 2024
118%
127%
124%
120%
114%
117%
Q4 2024
120%
127%
123%
118%
115%
117%
Q1 2025
124%
126%
122%
119%
114%
117%

Get answers from corporate disclosures

01
Extract insights from publicly listed companies' disclosures in tabular or text format.
02
Compare and contrast information from multiple time periods and companies with no constraint.
03
Trace every number. One‑click links back to the original paragraph or table for full auditability.

Turn natural language into custom tables

01
Create AI spreadsheets that synthesize years of financial disclosures into rows and columns.
02
Describe rows in natural language and get results in text summaries, metrics, or groups.
03
Build custom datasets, peer comparison tables, insight trackers, and anything else you can imagine.
20-F
8-K
10-Q
10-K
Transcript
DEF 14A
Company Metrics
Peer Comps Table
Industry Analysis
Captide API

API access to machine-readable global filings with integrated agentic AI

Turn prompts into insights systematically

Captide’s API lets you submit natural language prompts and get back markdown responses derived from companies’ financial disclosures streamed back to you.
Every response is linked to its original source, and with Captide’s SDK, you can easily integrate and display the results in both internal tools and customer-facing applications.
MARKDOWN RESPONSE
data: {"type":"markdown_chunk","content":""}

data: {"type":"markdown_chunk","content":"Ly"}

data: {"type":"markdown_chunk","content":"ft"}

data: {"type":"markdown_chunk","content":"'s"}

data: {"type":"markdown_chunk","content":" latest"}

data: {"type":"markdown_chunk","content":" Restricted"}

data: {"type":"markdown_chunk","content":" Stock"}

data: {"type":"markdown_chunk","content":" Units"}

data: {"type":"markdown_chunk","content":" ("}

data: {"type":"markdown_chunk","content":"RS"}

data: {"type":"markdown_chunk","content":"Us"}

data: {"type":"markdown_chunk","content":")"}

data: {"type":"markdown_chunk","content":" and"}

data: {"type":"markdown_chunk","content":" stock"}

data: {"type":"markdown_chunk","content":" options"}

data: {"type":"markdown_chunk","content":" balances"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" as"}

data: {"type":"markdown_chunk","content":" reported"}

data: {"type":"markdown_chunk","content":" in"}

data: {"type":"markdown_chunk","content":" their"}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"10"}

data: {"type":"markdown_chunk","content":"-K"}

data: {"type":"markdown_chunk","content":" filing"}

data: {"type":"markdown_chunk","content":" for"}

data: {"type":"markdown_chunk","content":" the"}

data: {"type":"markdown_chunk","content":" fiscal"}

data: {"type":"markdown_chunk","content":" year"}

data: {"type":"markdown_chunk","content":" ended"}

data: {"type":"markdown_chunk","content":" December"}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"31"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"202"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" are"}

data: {"type":"markdown_chunk","content":" as"}

data: {"type":"markdown_chunk","content":" follows"}

data: {"type":"markdown_chunk","content":":\n\n"}

data: {"type":"markdown_chunk","content":"###"}

data: {"type":"markdown_chunk","content":" RS"}

data: {"type":"markdown_chunk","content":"U"}

data: {"type":"markdown_chunk","content":" Activity"}

data: {"type":"markdown_chunk","content":"\n"}

data: {"type":"markdown_chunk","content":"-"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"Non"}

data: {"type":"markdown_chunk","content":"vest"}

data: {"type":"markdown_chunk","content":"ed"}

data: {"type":"markdown_chunk","content":" RS"}

data: {"type":"markdown_chunk","content":"Us"}

data: {"type":"markdown_chunk","content":" as"}

data: {"type":"markdown_chunk","content":" of"}

data: {"type":"markdown_chunk","content":" December"}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"31"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"202"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":":"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"26"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":"194"}

data: {"type":"markdown_chunk","content":" thousand"}

data: {"type":"markdown_chunk","content":" shares"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":" ["}

data: {"type":"markdown_chunk","content":"#"}

data: {"type":"markdown_chunk","content":"913"}

data: {"type":"markdown_chunk","content":"ca"}

data: {"type":"markdown_chunk","content":"0"}

data: {"type":"markdown_chunk","content":"aa"}

data: {"type":"markdown_chunk","content":"].\n"}

data: {"type":"markdown_chunk","content":"-"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"Weighted"}

data: {"type":"markdown_chunk","content":"-average"}

data: {"type":"markdown_chunk","content":" grant"}

data: {"type":"markdown_chunk","content":" date"}

data: {"type":"markdown_chunk","content":" fair"}

data: {"type":"markdown_chunk","content":" value"}

data: {"type":"markdown_chunk","content":" of"}

data: {"type":"markdown_chunk","content":" non"}

data: {"type":"markdown_chunk","content":"vest"}

data: {"type":"markdown_chunk","content":"ed"}

data: {"type":"markdown_chunk","content":" RS"}

data: {"type":"markdown_chunk","content":"Us"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":":"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"$"}

data: {"type":"markdown_chunk","content":"10"}

data: {"type":"markdown_chunk","content":"."}

data: {"type":"markdown_chunk","content":"67"}

data: {"type":"markdown_chunk","content":" per"}

data: {"type":"markdown_chunk","content":" share"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":" ["}

data: {"type":"markdown_chunk","content":"#"}

data: {"type":"markdown_chunk","content":"913"}

data: {"type":"markdown_chunk","content":"ca"}

data: {"type":"markdown_chunk","content":"0"}

data: {"type":"markdown_chunk","content":"aa"}

data: {"type":"markdown_chunk","content":"].\n"}

data: {"type":"markdown_chunk","content":"-"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"Aggregate"}

data: {"type":"markdown_chunk","content":" intrinsic"}

data: {"type":"markdown_chunk","content":" value"}

data: {"type":"markdown_chunk","content":" of"}

data: {"type":"markdown_chunk","content":" non"}

data: {"type":"markdown_chunk","content":"vest"}

data: {"type":"markdown_chunk","content":"ed"}

data: {"type":"markdown_chunk","content":" RS"}

data: {"type":"markdown_chunk","content":"Us"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":":"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"$"}

data: {"type":"markdown_chunk","content":"336"}

data: {"type":"markdown_chunk","content":"."}

data: {"type":"markdown_chunk","content":"3"}

data: {"type":"markdown_chunk","content":" million"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":" ["}

data: {"type":"markdown_chunk","content":"#"}

data: {"type":"markdown_chunk","content":"913"}

data: {"type":"markdown_chunk","content":"ca"}

data: {"type":"markdown_chunk","content":"0"}

data: {"type":"markdown_chunk","content":"aa"}

data: {"type":"markdown_chunk","content":"].\n"}

data: {"type":"markdown_chunk","content":"-"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"RS"}

data: {"type":"markdown_chunk","content":"Us"}

data: {"type":"markdown_chunk","content":" expected"}

data: {"type":"markdown_chunk","content":" to"}

data: {"type":"markdown_chunk","content":" vest"}

data: {"type":"markdown_chunk","content":" as"}

data: {"type":"markdown_chunk","content":" of"}

data: {"type":"markdown_chunk","content":" December"}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"31"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"202"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":":"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"25"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":"688"}

data: {"type":"markdown_chunk","content":" thousand"}

data: {"type":"markdown_chunk","content":" shares"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":" ["}

data: {"type":"markdown_chunk","content":"#"}

data: {"type":"markdown_chunk","content":"913"}

data: {"type":"markdown_chunk","content":"ca"}

data: {"type":"markdown_chunk","content":"0"}

data: {"type":"markdown_chunk","content":"aa"}

data: {"type":"markdown_chunk","content":"].\n"}

data: {"type":"markdown_chunk","content":"-"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"Aggregate"}

data: {"type":"markdown_chunk","content":" intrinsic"}

data: {"type":"markdown_chunk","content":" value"}

data: {"type":"markdown_chunk","content":" of"}

data: {"type":"markdown_chunk","content":" RS"}

data: {"type":"markdown_chunk","content":"Us"}

data: {"type":"markdown_chunk","content":" expected"}

data: {"type":"markdown_chunk","content":" to"}

data: {"type":"markdown_chunk","content":" vest"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":":"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"$"}

data: {"type":"markdown_chunk","content":"331"}

data: {"type":"markdown_chunk","content":"."}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":" million"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":" ["}

data: {"type":"markdown_chunk","content":"#"}

data: {"type":"markdown_chunk","content":"913"}

data: {"type":"markdown_chunk","content":"ca"}

data: {"type":"markdown_chunk","content":"0"}

data: {"type":"markdown_chunk","content":"aa"}

data: {"type":"markdown_chunk","content":"].\n\n"}

data: {"type":"markdown_chunk","content":"###"}

data: {"type":"markdown_chunk","content":" Stock"}

data: {"type":"markdown_chunk","content":" Options"}

data: {"type":"markdown_chunk","content":" Activity"}

data: {"type":"markdown_chunk","content":"\n"}

data: {"type":"markdown_chunk","content":"-"}

data: {"type":"markdown_chunk","content":" As"}

data: {"type":"markdown_chunk","content":" of"}

data: {"type":"markdown_chunk","content":" December"}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"31"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"202"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"no"}

data: {"type":"markdown_chunk","content":" stock"}

data: {"type":"markdown_chunk","content":" options"}

data: {"type":"markdown_chunk","content":" remained"}

data: {"type":"markdown_chunk","content":" outstanding"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":"."}

data: {"type":"markdown_chunk","content":" All"}

data: {"type":"markdown_chunk","content":" options"}

data: {"type":"markdown_chunk","content":" were"}

data: {"type":"markdown_chunk","content":" exercised"}

data: {"type":"markdown_chunk","content":" during"}

data: {"type":"markdown_chunk","content":" the"}

data: {"type":"markdown_chunk","content":" year"}

data: {"type":"markdown_chunk","content":" ["}

data: {"type":"markdown_chunk","content":"#"}

data: {"type":"markdown_chunk","content":"3"}

data: {"type":"markdown_chunk","content":"df"}

data: {"type":"markdown_chunk","content":"603"}

data: {"type":"markdown_chunk","content":"e"}

data: {"type":"markdown_chunk","content":"5"}

data: {"type":"markdown_chunk","content":"].\n"}

data: {"type":"markdown_chunk","content":"-"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"Weighted"}

data: {"type":"markdown_chunk","content":"-average"}

data: {"type":"markdown_chunk","content":" exercise"}

data: {"type":"markdown_chunk","content":" price"}

data: {"type":"markdown_chunk","content":" of"}

data: {"type":"markdown_chunk","content":" options"}

data: {"type":"markdown_chunk","content":" exercised"}

data: {"type":"markdown_chunk","content":" in"}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"202"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":":"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"$"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":"."}

data: {"type":"markdown_chunk","content":"63"}

data: {"type":"markdown_chunk","content":" per"}

data: {"type":"markdown_chunk","content":" share"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":" ["}

data: {"type":"markdown_chunk","content":"#"}

data: {"type":"markdown_chunk","content":"3"}

data: {"type":"markdown_chunk","content":"df"}

data: {"type":"markdown_chunk","content":"603"}

data: {"type":"markdown_chunk","content":"e"}

data: {"type":"markdown_chunk","content":"5"}

data: {"type":"markdown_chunk","content":"].\n"}

data: {"type":"markdown_chunk","content":"-"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"Aggregate"}

data: {"type":"markdown_chunk","content":" intrinsic"}

data: {"type":"markdown_chunk","content":" value"}

data: {"type":"markdown_chunk","content":" of"}

data: {"type":"markdown_chunk","content":" options"}

data: {"type":"markdown_chunk","content":" exercised"}

data: {"type":"markdown_chunk","content":" in"}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"202"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":":"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"$"}

data: {"type":"markdown_chunk","content":"8"}

data: {"type":"markdown_chunk","content":"."}

data: {"type":"markdown_chunk","content":"3"}

data: {"type":"markdown_chunk","content":" million"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":" ["}

data: {"type":"markdown_chunk","content":"#"}

data: {"type":"markdown_chunk","content":"d"}

data: {"type":"markdown_chunk","content":"926"}

data: {"type":"markdown_chunk","content":"02"}

data: {"type":"markdown_chunk","content":"a"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":"].\n\n"}

data: {"type":"markdown_chunk","content":"###"}

data: {"type":"markdown_chunk","content":" Additional"}

data: {"type":"markdown_chunk","content":" Insights"}

data: {"type":"markdown_chunk","content":"\n"}

data: {"type":"markdown_chunk","content":"-"}

data: {"type":"markdown_chunk","content":" No"}

data: {"type":"markdown_chunk","content":" stock"}

data: {"type":"markdown_chunk","content":" options"}

data: {"type":"markdown_chunk","content":" were"}

data: {"type":"markdown_chunk","content":" granted"}

data: {"type":"markdown_chunk","content":" during"}

data: {"type":"markdown_chunk","content":" the"}

data: {"type":"markdown_chunk","content":" years"}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"202"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"202"}

data: {"type":"markdown_chunk","content":"3"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" and"}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"202"}

data: {"type":"markdown_chunk","content":"2"}

data: {"type":"markdown_chunk","content":" ["}

data: {"type":"markdown_chunk","content":"#"}

data: {"type":"markdown_chunk","content":"d"}

data: {"type":"markdown_chunk","content":"926"}

data: {"type":"markdown_chunk","content":"02"}

data: {"type":"markdown_chunk","content":"a"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":"].\n"}

data: {"type":"markdown_chunk","content":"-"}

data: {"type":"markdown_chunk","content":" The"}

data: {"type":"markdown_chunk","content":" RS"}

data: {"type":"markdown_chunk","content":"Us"}

data: {"type":"markdown_chunk","content":" outstanding"}

data: {"type":"markdown_chunk","content":" under"}

data: {"type":"markdown_chunk","content":" Lyft"}

data: {"type":"markdown_chunk","content":"'s"}

data: {"type":"markdown_chunk","content":" various"}

data: {"type":"markdown_chunk","content":" plans"}

data: {"type":"markdown_chunk","content":" as"}

data: {"type":"markdown_chunk","content":" of"}

data: {"type":"markdown_chunk","content":" December"}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"31"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" "}

data: {"type":"markdown_chunk","content":"202"}

data: {"type":"markdown_chunk","content":"4"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" totaled"}

data: {"type":"markdown_chunk","content":" **"}

data: {"type":"markdown_chunk","content":"26"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":"194"}

data: {"type":"markdown_chunk","content":" thousand"}

data: {"type":"markdown_chunk","content":" shares"}

data: {"type":"markdown_chunk","content":"**"}

data: {"type":"markdown_chunk","content":" ["}

data: {"type":"markdown_chunk","content":"#"}

data: {"type":"markdown_chunk","content":"415"}

data: {"type":"markdown_chunk","content":"10"}

data: {"type":"markdown_chunk","content":"ad"}

data: {"type":"markdown_chunk","content":"9"}

data: {"type":"markdown_chunk","content":"].\n\n"}

data: {"type":"markdown_chunk","content":"If"}

data: {"type":"markdown_chunk","content":" you"}

data: {"type":"markdown_chunk","content":" need"}

data: {"type":"markdown_chunk","content":" further"}

data: {"type":"markdown_chunk","content":" breakdown"}

data: {"type":"markdown_chunk","content":"s"}

data: {"type":"markdown_chunk","content":" or"}

data: {"type":"markdown_chunk","content":" historical"}

data: {"type":"markdown_chunk","content":" comparisons"}

data: {"type":"markdown_chunk","content":","}

data: {"type":"markdown_chunk","content":" let"}

data: {"type":"markdown_chunk","content":" me"}

data: {"type":"markdown_chunk","content":" know"}

data: {"type":"markdown_chunk","content":"!"}

data: {"type":"markdown_chunk","content":""}

data: {"type":"full_answer","content":"Lyft's latest Restricted Stock Units (RSUs) and stock options balances, as reported in their 10-K filing for the fiscal year ended December 31, 2024, are as follows:\n\n### RSU Activity\n- **Nonvested RSUs as of December 31, 2024**: **26,194 thousand shares** [#913ca0aa].\n- **Weighted-average grant date fair value of nonvested RSUs**: **$10.67 per share** [#913ca0aa].\n- **Aggregate intrinsic value of nonvested RSUs**: **$336.3 million** [#913ca0aa].\n- **RSUs expected to vest as of December 31, 2024**: **25,688 thousand shares** [#913ca0aa].\n- **Aggregate intrinsic value of RSUs expected to vest**: **$331.4 million** [#913ca0aa].\n\n### Stock Options Activity\n- As of December 31, 2024, **no stock options remained outstanding**. All options were exercised during the year [#3df603e5].\n- **Weighted-average exercise price of options exercised in 2024**: **$4.63 per share** [#3df603e5].\n- **Aggregate intrinsic value of options exercised in 2024**: **$8.3 million** [#d92602a4].\n\n### Additional Insights\n- No stock options were granted during the years 2024, 2023, and 2022 [#d92602a4].\n- The RSUs outstanding under Lyft's various plans as of December 31, 2024, totaled **26,194 thousand shares** [#41510ad9].\n\nIf you need further breakdowns or historical comparisons, let me know!"}

data: {"type":"done"}

Build datasets with any features you can imagine

Track any metric or insight from financial disclosures over time, or create structured peer comparison tables — all in structured JSON with links back to the original sources.
Integrate results into your data packages, visualize them in internal or external applications, or use them to generate features and signals for your investment models.
STRUCTURED OUTPUT
{
  "tickers": ["AAPL"],
  "response": [
    {
      "date": "2024-12-28",
      "metrics": {
        "iPhone": 69138000000,
        "Mac": 8987000000,
        "iPad": 8088000000,
        "Wearables, Home and Accessories": 11747000000,
        "Services": 26340000000
      },
      "source": "https://docs.captide.co/reports/aapl-2025-q1.html?id=4gud78fg"
    },
    {
      "date": "2024-09-28",
      "metrics": {
        "iPhone": 46222000000,
        "Mac": 7744000000,
        "iPad": 6950000000,
        "Wearables, Home and Accessories": 9042000000,
        "Services": 24972000000
      },
      "source": "https://docs.captide.co/reports/aapl-2024-q4.html?id=4gud78fg"
    },
    {
      "date": "2024-06-29",
      "metrics": {
        "iPhone": 39296000000,
        "Mac": 7009000000,
        "iPad": 7162000000,
        "Wearables, Home and Accessories": 8097000000,
        "Services": 24213000000
      },
      "source": "https://docs.captide.co/reports/aapl-2024-q3.html?id=4gud78fg"
    },
    {
      "date": "2024-03-30",
      "metrics": {
        "iPhone": 45963000000,
        "Mac": 7451000000,
        "iPad": 5559000000,
        "Wearables, Home and Accessories": 7913000000,
        "Services": 23867000000
      },
      "source": "https://docs.captide.co/reports/aapl-2024-q2.html?id=4gud78fg"
    }
  ]
}
### **OPERATING AND FINANCIAL REVIEW**

Santos' principal activities during 2020 were the exploration for, and development, production, transportation and marketing of, hydrocarbons. There were no significant changes in the nature of these activities during the year. Revenue is derived primarily from the sale of gas and liquid hydrocarbons.A review of the operations and of the results of those operations of the consolidated entity during the year is as follows:

| Summary of results table                                                      | 2020        | 2019        | Variance |
|-------------------------------------------------------------------------------|-------------|-------------|----------|
|                                                                               | mmboe       | mmboe       | %        |
| Production volume                                                             | 89.0        | 75.5        | 18       |
| Sales volume                                                                  | 107.1       | 94.5        | 13       |
|                                                                               | US\$million | US\$million |          |
| Product sales                                                                 | 3,387       | 4,033       | (16)     |
| EBITDAX1                                                                      | 1,898       | 2,457       | (23)     |
| Exploration and evaluation expensed                                           | (59)        | (103)       | (43)     |
| Depreciation and depletion                                                    | (1,015)     | (1,000)     | 1        |
| Net impairment loss                                                           | (895)       | (61)        | nm       |
| Change in future restoration assumptions                                      | (1)         | 2           | (150)    |
| EBIT1                                                                         | (72)        | 1,295       | (106)    |
| Net finance costs                                                             | (234)       | (277)       | (16)     |
| Taxation expense                                                              | (51)        | (344)       | (85)     |
| Net (loss)/profit for the period and attributable to equity holders of Santos | (357)       | 674         | (153)    |
| Underlying profit for the period1                                             | 287         | 719         | (60)     |
| Underlying earnings per share (cents)1                                        | 13.8        | 34.5        | (60)     |

1 EBITDAX (earnings before interest, tax, impairment, depreciation, depletion, exploration and evaluation and impairment), EBIT (earnings before interest and tax) and underlying profit are non-IFRS measures that are presented to provide an understanding of the underlying performance of Santos' operations. Underlying profit excludes the impacts of asset acquisitions, disposals and impairments, as well as items that are subject to significant variability from one period to the next, including the effects of fair value adjustments and fluctuations in exchange rates. Please refer to page 22 for the reconciliation from net profit to underlying profit for the period. Underlying earnings per share represents underlying profit for the period divided by the weighted average number of shares on issue during the year. The non-IFRS financial information is unaudited; however, the numbers have been extracted from the financial statements which have been subject to audit by the Company's auditor.

### **Sales volume**

mmboe

Image /page/19/Figure/9 description: This bar chart displays data from the years 2016 to 2020, with the values 84.1, 83.4, 78.3, 94.5, and 107.1 respectively. Each year is represented on the horizontal axis, and the corresponding numeric values are shown above each bar. The bars for 2016 to 2019 are shown in light gray, while the bar for 2020 is shown in black. The values increase from 78.3 in 2018 to 107.1 in 2020, with the 2020 bar being the tallest and highlighted in bold text.

Sales volumes of 107.1 million barrels of oil equivalent (mmboe) were 13% higher than the previous year primarily due to a higher Santos interest in Bayu-Undan and Darwin LNG following completion in May 2020 of the acquisition of ConocoPhillips' assets in northern Australia and Timor-Leste.

### **Product sales revenue**

\$million

Image /page/19/Figure/13 description: This image is a vertical bar chart comparing numerical values from 2016 to 2020. Each bar represents a year labeled below it. The values for each year displayed above the bars are: 2016 with 2,594, 2017 with 3,100, 2018 with 3,660, 2019 with 4,033, and 2020 with 3,387. The bar for 2020 is filled in black and bolded to emphasize it, while the other bars are light grey. The bars increase from 2016 to 2019, then slightly decrease in 2020.

Sales revenue was down 16% compared to the previous year to \$3.4 billion, primarily due to lower realised prices partially offset by higher sales volumes due to the ConocoPhillips' acquisition. The average realised oil price decreased 34% to US\$48/ bbl and the average realised LNG price decreased 35% to US\$6.39/mmBtu due to lower customer demand resulting from the COVID-19 pandemic.

Access machine-readable global company filings

Tap into the most comprehensive database of global corporate disclosures in clean, structured Markdown format.
Designed for LLM use and downstream analysis, Captide's documents API eliminates the need to develop and maintain complex document gathering and OCR pipelines.

Plug into agentic AI for global financial disclosures

Use Captide's agent-response API to power multi-agent workflows and to enrich equity models with qualitative insights and real-time corporate event tracking.
All data is sourced exclusively from primary documents, with sentence-level traceability for complete transparency and auditability.
What precedent transactions were used by Morgan Stanley in the Qualtrics acquisition?
Morgan Stanley, in its analysis for the Qualtrics (XM) merger proxy (DEFM14A), used the following precedent transactions as comparables for its precedent transactions multiples analysis. These transactions were selected based on their similarity as software transactions since January 1, 2022. The key metric reviewed was the ratio of aggregate value (AV) to the target company's estimated next twelve months (NTM) revenue at the time of announcement.

| Target / Acquiror                                      | AV / NTM Revenue |
|--------------------------------------------------------|------------------|
| Anaplan, Inc. / Thoma Bravo                            | 12.9x            |
| Avalara, Inc. / Vista Equity Partners                  | 9.1x             |
| CDK Global, Inc. / Brookfield                          | 4.5x             |
| Citrix Systems, Inc. / Evergreen Coast Capital         | 5.0x             |
| Coupa Software Inc. / Thoma Bravo                      | 8.4x             |
| Duck Creek Technologies LLC / Vista Equity Partners    | 6.6x             |
| ForgeRock, Inc. / Thoma Bravo                          | 8.3x             |
| KnowBe4, Inc. / Vista Equity Partners                  | 10.9x            |
| Magnet Forensics Inc. / Thoma Bravo                    | 10.3x            |
| Medallia, Inc. / Thoma Bravo                           | 10.8x            |
| Ping Identity Corporation / Thoma Bravo                | 7.6x             |
| SailPoint Technologies Holdings, Inc. / Thoma Bravo    | 13.2x            |
| Sumo Logic, Inc. / Francisco Partners                  | 4.0x             |
| UserTesting, Inc. / Thoma Bravo                        | 5.3x             |
| Zendesk, Inc. / Hellman & Friedman                     | 5.4x             |

Based on this analysis, Morgan Stanley selected a representative AV/NTM Revenue multiple range of **5.5x to 9.0x** to apply to Qualtrics' estimated NTM revenue for valuation purposes.Morgan Stanley noted that no single precedent transaction is identical to Qualtrics or the transaction under consideration, and that the multiples were selected using professional judgment, considering industry, market, and company-specific factors.
Coverage

14K+ tickers

25+ markets

2.50M+ files

Financial reports

Annual Reports
Interim Reports

Current reports

Press Releases
Investors Slides

Corporate notices

Proxy Statements
Merger Notices

Earnings calls

Transcripts
Earnings Slides
Solutions

A purpose-built platform for finance experts

For asset managers

Enhance your investment research, surface insights that others have missed, and drive alpha at scale.

For investment banks

Stay on top of companies' governance, capital structures, and historical M&A activity and transactions.

For L/S Hedge Funds

Source proprietary signals and factor models, speed up due diligence, and track corporate actions in real-time.
Enterprise-Grade Security

No Training on User Data

Captide ensures your usage data is never used to train or fine-tune models

Dedicated Environment

Captide can provide a fully isolated, single-tenant setup for more control.

Self-Hosted

Captide can deploy the application fully into your cloud environment.
Testimonials

What people say about Captide

"As someone who specializes in AI technologies for the financial sector, I can say with confidence that Captide is in a class of its own. They deliver best-in-class responses to challenging queries on financials, proxies, covenants, and comparisons near instantly. They've developed a differentiated and novel approach on handling many of the classical issues for investment research and analysis."
Joseph Xiong
AI Strategy Committee, JPMorgan
"In over 20 years of leading investment product divisions, I’ve never encountered a technology as transformative as Captide. It completely redefines how investment opportunities are analyzed—turning weeks of work into minutes. The speed, depth, and accuracy it delivers are unlike anything else in the market."
Dr Miquel Noguer
Former Executive Director, UBS
"In FIG, the real insight is buried deep in the footnotes—capital adequacy disclosures, statutory reserves, fee breakdowns, or compensation structures buried in DEF 14As. Captide pulls it all up instantly. I can query across 10-Ks, 10-Qs, 8-Ks, and proxy filings from dozens of financial institutions and get precise, contextual answers in seconds. It’s completely changed how I prep for pitches, comps, and diligence."
Cesc Goula
FIG Investment Banking, Deutsche Bank